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Time response G(%'D

r(t) ‘ y(t) /\_
> I >

.| System | >

* We would like to analyze (stable) system’s property
by applying a test input r(t) and observing a time
response y(t).

* Time response is divided as

y(t) = ye(t) + yss(t)

Transient (natural) response Steady-state (forced) response
lim y(t) =0 (after yt dies out)

t—00




Ex: Transient & steady-state responsesc’t%'D

_t
r(t) = u(t) y(t) = 0.8 — 0.8¢72
, 0.8 R
2s+ 1
Step response
0.8 —
* Transient response //
L
ye(t) = —0.8e 2 o/
 Steady-state resp. 0.4 /

yss(l) = 0.8 0o /

c)O 2 4 6 8 10 12

Time (sec)
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r(t)

Typical test inputs C%B

r(t) = Ru(t)

Step function
(Most popular)

Sinusoidal input
was dealt with earlier
=» freq. response

r(t) ¢

r(t) 4

r(t) = Rtu(t)

0 i
Ramp function

Rt?
Parabolic
function

t



Steady-state value for step input G(%-D

r(t) = Ru(t) y(t) t
~ . | / .

1 G(s) | .

e Suppose that G(s) is stable.
e By the final value theorem:

Ilm y(t) = lim SG(S)— = RG(0)

s—0

 Step response converges to some finite value,
called steady-state value Yss



Steady-state error for input u(t) C%D
y(t)

Ymax - 1 — yss
102y33\ _
SS . -

0. 983/33/_>
O.9y33

O5y83

O.lyss -
— T’I" - Tp TS




Example revisited C'(%'D

* For the example on Slide 4:
» Steady-state error : 1-0.8=0.2

Step response

—

0.8

0.6 /
/
./

OO 2 4 6 8 10 12

Time (sec)




Performance measures C-%D

* Transient response  «——\ (Previous lectures)
* Peak value
* Peak time
* Percent overshoot
* Delay time Next, we will connect
e Rise time > these measures

with s-domain.

Settling time

* Steady state response
* Steady state error & (Today’s lecture)




Steady-state error of feedback systemc’t%'D

Assumptions

R(S)’?E(S) () Y(S)> . L(s) = Plant(s)*Controller(s)

* Unity feedback (no block on
feedback path)

 CL system is stable

» Suppose that we want output y(t) to track r(t).
* Error e(t) :=r(t) — y(t)
e Steady-state error

(s)

1
= liIm e(t) = Iim sE = |Iim R
css t—>ooe(}v s—>OS (5) S—>081—|—L(S)

Final value theorem
(Suppose CL system is stable!!!)
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Error constants G(%'D

e CL system’s ability to reduce steady-state error ess
e “Large error constant” means “large ability”.

* Three error constants
e Step-error (position-error) constant

Ky = lim L(s
P s—0 ()
 Ramp-error (velocity-error) constant
Ky = lim sL(s)
s—0

e Parabolic-error (acceleration-error) constant

Kg := lim s°L(s)

s—0
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Steady-state error for step r(t) C%D

R
r(t) = Ru(l) = ess = 14+ K
p
Reference input
r(f) = Ruy(t)
r(f) 4
y() il T = v
R Naiil™ Neffe——p 1 R
e = |lim s )
55 s—0 1 L(s) s
R
Output y (1) — 1+ L(0)
] > Y
I

12



Steady-state error for ramp r(t) C-%D

R
r(t) = Rtu(t) = egs = —
v
Reference input
r(f) = Rtuy(1) ' 1 R
— 1M .
css o0 1 + L(s) s2
. R
'\ ~ lim sL(s)
5—0
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Steady-state error for parabolic r(t)c'%D

Rt? R
r(t) = —u(t) = ess = —
2 a
4 Vo -k
K,
Reference input 1 R
()= (0 ess = ST T () 53
B R
lim s2L(s)
5s—0
Output y(1) H—j

! Ka

14



Zero steady-state error C-(%B

* When does steady-state error become zero? (i.e.
accurate tracking!)

* Infinite error constant!

* Forstepr(t) K, = 111’1(1) L(s) = o0
S—r

= L(s) must have at least 1-integrator. (system type 1)
* Forrampr(t) K, = lim sL(s) = o
s—0
= L(s) must have at least 2-integrators. (system type 2)
* For parabolicr(t) K, = lin%) s*L(s) = oo
s—
= L(s) must have at least 3-integrators. (system type 3)

15



Example 1 G%-D

* [(s) has 2-integrators. R(s) ~E(s) (o) Y(S)>
L(s)= 5 '+ \
) s2(s+12)

* Characteristic equation

14+L(s) = 0 & s2(s+12)+K =0 & $+126*+K =0

* CL system is NOT stable for any K.

 e(t) will not converge. (Don’t use today’s results if
CL system is not stable!!!)

16



Example 2 G%-D

* L(s) has 1-integrator. R(s) ~E(s) ; Y (s)
L(s) = K(5+315) 4?_@ "
 s(s+1.5)(s+ 0.5)

* By Routh-Hurwitz criterion, CL is stable if
0 < K <1.304

 Step r(t) R
€ss — —
14+ K,
e Ramp r(t) _ R — i _ 315K _
€ss K, Ky . ;E’(l) sL(s) 0.75 42K
R —

* Parabolicr(t) ess=-—=00c K,:=lims?L(s) =0
K, s—0

17



Example 3 G%'D

* [(s) has 2-integrators. R(s) ~E(s) Y (s)
. L(s) >
L(s) = 5(s+ 1) _
s2(s+12)(s+5)

* By Routh-Hurwitz criterion, we can show that CL
system is stable.

*Stepr(t) o B _,
88 1+Kp

* Ramp r(t) . zizo
SS KU

* Parabolicr(t) | _ KE = 12R Ko := lim s°L(s) = %

a s—0

18



Integrators in L(s) C%D

* Integrators in L(s) (i.e. plant and controller) are very
powerful to eliminate the steady-state errors.

e Examples 2 & 3
e Lab 5 —addition of an integral compensator

 However, integrators in L(s) tend to destabilize the
feedback system.

* Example 1

19



Unity Gain Feedback (H(s)=1) c-%a

Table 3.1:

System ) Ramp Parabolic
Type Step input: input: input:
Nungber, r(t) = Au(?) r(t) = At r(t) = 44

A
0 eSS:1+Kp Css — OO €ss — OO
A
1 €es = 0 ess:F Css — OO
A
2 6.55:0 65520 BSS:?
>3 Ces = 0 €ss = 0 ess = 0

20



Unity Gain Feedback (H(s)=1) @%.3

Procedure to determine steady state error:

Given G(s) (and H=1) and input type:

1. Determine the system type. To do this determine the number of poles at
zero (i.e. at s = 0) of transfer function G (s). Alternatively determine the
number of zeros appearing at s = 0 of the transfer function: 1 — M (s),

where M (s) = 156(;()_‘?)3 is the closed loop gain.

2. With the system and input types, the steady state error, es, can be read
from Table 3.1 for most combinations or determined using the appropriate
error constant.

21



Non-Unity Gain Feedback (H(s)il)c.%g

R (s) Y (s)

4.@_%)—. G (s) .
H (s)
Y (s) G (s)

R(s) 1+G(s)H(s)

_ 1 G (s) H(s)
H(s) 1+G(s)H(s)

Ideal Gain Correction term

~ () for |G (s)H (s)] > 1

22



Non-Unity Gain Feedback (H(s);tl)c.gg

DC gain of feedback block: L £ lim H (s) = H(0)

s—0

1
Define steady state error: e, = lim < —1 (t) — y(t)}
t—00 L ]CH
. , (1
Final value theorem: ess = lims ¢ —R (s) — Y (s)
s—0 L kH

Closed loop gain:

_Y() e—imsi s)— M(s)IR(s
M) = 1 = e = tims { LR () - MR
_ % lim s {1 — iz M(s)} R (s)

23



Non-Unity Gain Feedback (H(s);tl)c.gg
Closed loop gain:

_Y(s) G(s)
M(s) = R(s) — 1+G(s)H(s)

Closed loop gain, general form:
b, 8™ + b,y 18™ T+ ...+ bys + by
S+ @, 18"+ ...+ ais+ag

Steady state error:

: lims{l — kgM(s)}R(s)

kH s—0

M(s) =

688

System Type = # zeros at s =0 of 1 — kg M(s)

24



Non-Unity Gain Feedback (H(s);tl)c.gg

Table 3.2:
P boli
STystem Step input: Ramp input: ?:;?)uz.lc
ype: t) = Aul(t t) = At '
PO | () = Au(t r (1) ) g
A [(ay —bokg)]
0 €ss = ke |:( . aOO H) €gss — OCQ €gs — OO
A [(ay —bik
]_ e — 0 = k11 |:( ! aol H)] 633 = O
A [(a, — bzk
2 .. =0 .. =0 -2 [( 2 a02 H)]
> 3 €ss = 0 €ss = 0 €ss — 0

25



Non-Unity Gain Feedback (H(s);tl)c.%.)

Procedure to determine steady state error:

Given G(s) and H(s) and input type:

1. Determine constant kg, the DC gain of H (s), i.e. kg = lim,_,o H (s)
= H(0).

2. Determine the system type. To do this determine the number of zeros

appearing at s = 0 of the transfer function: 1 — kg M (s), where M (s) =
G(s)
1+G(s)H (s)

, 18 the closed loop gain.

3. With the system type number and input type, the steady state error, e,
can be read from Table 3.2 for most combinations or determined using
the appropriate coefficients of certain numerator and denominator terms

of M (s).

26



Example 4 C-%-D

G(s):%ade(s):S%4

a) Find the steady state error, eg, for unit step, ramp and parabolic inputs.

Solution:
Steps:

1) As H(s) = sj%p the constant kg = lim,_,0 H (s) = H(0) =2 = 0.5

2) The closed loop gain M (s) = 1+GC€.S1)H(S) so that

M (s) 1_|_f_ 2
s s+4

s+ 4
2 + 45+ 2

27



Example 4, cont’d C-%D

s+4
M(s) =
(5) s2 + 45+ 2
—
4
1—kHM(s):1—O.5-82j_IS+2
~ s(s+3.9)
52445+ 2

One zero at s = 0 = system type =1

28



Example 4, cont’d C%B
From Table 3.2:

STystEIIl Step iIlpllt: RE:IIIII) input: Parabolic input:
ype: r(t) = Au(t) r(t) = At r(t) = 417
N
A [(ay —biky)
1 Cgg — 0 Css = kg { : ag ] Cgg = OO

3) With a system type of 1, from the second row of Table 3.2 we see
that ess = 0 and e, = 0o for step and parabolic inputs, respectively.
For a unit ramp (with A = 1), the error is given by

1 [(a,1 - blkH)]

€ss — kH a0
1 |4—1-0.5
— = 3.5
0.5 [ 2 ]

29



|Ideal output and actual output:

40

35

Example 4, cont’d

ideal output and actual output

ideal output X: U
= actual output Y:34 -
]
X 14 7
- Y- 28 n -
| | X7
7 Y305
L - |
X 14
L Y: 245
4 6 8 10 12 14 16 18 20

error

3.5

25

15

0.5

Error evolution:

time (s)

30



Example 5 C'(%'D

8(s+1
G (8) — 32(3110) and H (8) - (S—I—-I_4)

a) Find the steady state error, g, for unit step, ramp and parabolic inputs.

Solution:
Steps:
1) As H (s) = 829:41)7 the constant kg = limy_,o H (s) = H (0) =5 =2
2) The closed loop gain, M (s) = 1+G(€S}J(s)’ so that
S —
M (S) o s2(s+10)

o 1 8(s+1)
L+ s2(s+10)  s+4

31



Example 5, cont’d C%D

s +4

M —
() = A 149 £ 1052 + 85 1 8

—

s+ 4

1 —kgM =1—-2.
M (s) st + 1453 + 4052 4+ 8s + 8

~ s(s* 4 14s° 4 405 4 6)
s* 4 1453 4+ 40s? + 8s + 8

One zero at s =0 = system type =1

32



Example 5, cont’d C-(%B
From Table 3.2:

STystEIIl Step iIlpllt: RE:IIIII) input: Parabolic input:
yher r(t) = Aul(t) r(t) = At r(t) = gt
N
A [(ay —biky)
1 g = Css = kg [ : a0 ] Egg = OO

3) With a system type of 1, from the second row of Table 3.2 we see
that e, = 0 and e, = o0 for step and parabolic inputs, respectively.
For a unit ramp (with A = 1), the error is given by

1 [(a1 - blkH)]

Css =
ku a

1 |8—1-2
2 8

] = 0.375

33



Example 6: H#1 Method C'%D

(H#1 method can also be used for H=1 problems)

4(s+1
G(s) = SQ(SJF(MJ;)&H) and H (s) =1

a) Find the steady state error, g, for unit step, ramp and parabolic inputs.

Solution - Non-Unity Gain Feedback method:

Steps:

1) As H (s) = 1, the constant kg = lim,_,o0 H (s) = H (0) =1

2) The closed loop gain M (s) = HGCE_S}{(S) = HLG%) so that

34



Example 6: H#1 method, cont’d

4(s+1)

G s2(s+10)(s+4)
M(s) = — 7 =
1+G 1+ sz(sz—ll—(f[—)i_)l(,)s—i—él)
4s + 4

st + 14383 +40s2 +4s+ 4
—

4s + 4
1 —kyM(s)=1—1 il

st 4+ 1453 +40s2 +4s+ 4

B s?(s? + 14s + 40)
st 41453 + 4082 + 4s + 4

Two zeros at s =0 — system type = 2

35



Example 6: H#¥1 method, cont’d c-(%-a
From Table 3.2:

STystEIIl Step iIlpllt: RE:IIIII) input: Parabolic input:
ype: r(t) = Au(t) r(t) = At r(t) = 517
N
A [(ay —boky)
2 e = 0 €ss — 0 Cos = kg [ ; ago :|

3) With a system type of 2, from the second row of Table 3.2 we see
that e;s = 0 and ess = 0 for both step and ramp inputs, respectively.
For a unit parabola (with A = 1), the error is given by

1 [(a2 - bgkﬂ)]

e_SS:kH @
1140—-0-1
= — = 10
1
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Example 6: H=1 method

&

Solution - Unity Gain Feedback method:

G (s) =

4(s+1)

s?(s+10)(s+4)

and H (s) =1

Number of poles at s = 0 of G(s) = system type = 2

-rom Table 3.1:
Sy&t embType Step input: Ramp input: P?:'laz?lc
e r(t) = Au(t) r(t) = At s
2 € — O € — O 683 — Ki

37



Example 6: H=1 method, cont’d @%.3

Ka — 1im5_>0 82 ¥ G(S)

~ 500 " 52(s+ 10)(s + 4)
1
~ 10
: A=1
Css = 7 =
o U=
= 10

Which is the same result obtained by the H#1 method.
38
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Example 6, cont’d, time response

| — — actual output

«10* ideal output and actual output

ideal output

50 100 150 200 250
time (s)

300

45

4.495

449

4.485

outputs

4.48

4.475

299 2991 2992 2093 2994 2995 2996 2997 2998 2999

%104 ideal output and actual output

———ideal output
— — actual output

error

X: 300
Y:9.999

100

150
time (s)

200 250

300

time (s)

300
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Summary G(%-D

e Steady-state error

 Stable (!) unity and non-unity gain feedback systems are
treated in a consistent manner.

* The key tool is the final value theorem.

* Main determinants of steady-state error is:
1) system type
2) input type

40



