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Time response

• We would like to analyze (stable) system’s property 
by applying a test input r(t) and observing a time 
response y(t).

• Time response is divided as
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System

Transient (natural) response Steady-state (forced) response

(after yt dies out)



Ex: Transient & steady-state responses
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Typical test inputs
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Step function 
(Most popular)

Ramp function

Parabolic 

function

Sinusoidal input 
was dealt with earlier 

 freq. response



Steady-state value for step input

• Suppose that G(s) is stable.

• By the final value theorem:

• Step response converges to some finite value, 
called steady-state value
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G(s)



Steady-state error for input u(t)
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Example revisited

• For the example on Slide 4:
• Steady-state error : 1-0.8=0.2
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Performance measures

• Transient response
• Peak value

• Peak  time

• Percent overshoot

• Delay time

• Rise time

• Settling time

• Steady state response
• Steady state error
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Next, we will connect 

these measures 

with s-domain.

(Today’s lecture)

(Previous lectures)



Steady-state error of feedback system

• Suppose that we want output y(t) to track r(t).

• Error 

• Steady-state error
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Assumptions

• L(s) = Plant(s)*Controller(s)

• Unity feedback (no block on 

feedback path)

• CL system is stable

Final value theorem 
(Suppose CL system is stable!!!)



Error constants

• CL system’s ability to reduce steady-state error ess

• “Large error constant” means “large ability”.

• Three error constants
• Step-error (position-error) constant

• Ramp-error (velocity-error) constant

• Parabolic-error (acceleration-error) constant
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Steady-state error for step r(t)
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Kp



Steady-state error for ramp r(t)
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Kv



Steady-state error for parabolic r(t)
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Ka



Zero steady-state error 

• When does steady-state error become zero? (i.e. 
accurate tracking!)

• Infinite error constant! 
• For step r(t)

• For ramp r(t)

• For parabolic r(t)
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L(s) must have at least 1-integrator. (system type 1) 

L(s) must have at least 2-integrators. (system type 2)

L(s) must have at least 3-integrators. (system type 3)



Example 1

• L(s) has 2-integrators.

• Characteristic equation

• CL system is NOT stable for any K.

• e(t) will not converge. (Don’t use today’s results if 
CL system is not stable!!!)
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Example 2

• L(s) has 1-integrator.

• By Routh-Hurwitz criterion, CL is stable if

• Step r(t)

• Ramp r(t)

• Parabolic r(t)
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Example 3

• L(s) has 2-integrators.

• By Routh-Hurwitz criterion, we can show that CL 
system is stable.

• Step r(t)

• Ramp r(t)

• Parabolic r(t)
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Integrators in L(s)

• Integrators in L(s) (i.e. plant and controller) are very 
powerful to eliminate the steady-state errors.
• Examples 2 & 3

• Lab 5 – addition of an integral compensator

• However, integrators in L(s) tend to destabilize the 
feedback system.
• Example 1
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Unity Gain Feedback (H(s)=1)

Table 3.1:
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Unity Gain Feedback (H(s)=1)

Procedure to determine steady state error:

Given G(s) (and H=1) and input type:



Non-Unity Gain Feedback (H(s)≠1)
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Ideal Gain Correction term
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Non-Unity Gain Feedback (H(s)≠1)

Define steady state error:

Final value theorem:

Closed loop gain:

DC gain of feedback block:
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Non-Unity Gain Feedback (H(s)≠1)
Closed loop gain:

Closed loop gain, general form:

Steady state error:
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Non-Unity Gain Feedback (H(s)≠1)

Table 3.2:
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Non-Unity Gain Feedback (H(s)≠1)

Procedure to determine steady state error:

Given G(s) and H(s) and input type:



Solution:
Steps:
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Example 4
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Example 4, cont’d
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From Table 3.2:
Example 4, cont’d
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Ideal output and actual output: Error evolution:

Example 4, cont’d



Solution:
Steps:
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Example 5
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Example 5, cont’d
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From Table 3.2:
Example 5, cont’d



Solution - Non-Unity Gain Feedback method:

Steps:
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Example 6: H≠1 Method 
(H≠1 method can also be used for H=1 problems)
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Example 6: H≠1 method, cont’d
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From Table 3.2:

Example 6: H≠1 method, cont’d
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Solution - Unity Gain Feedback method:

From Table 3.1:

Example 6: H=1 method 
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Example 6: H=1 method, cont’d

Which is the same result obtained by the H≠1 method.
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Example 6, cont’d, time response



Summary

• Steady-state error
• Stable (!) unity and non-unity gain feedback systems are 

treated in a consistent manner.

• The key tool is the final value theorem.

• Main determinants of steady-state error is: 

1) system type

2) input type
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